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Curvature energy of a focal conic domain with arbitrary eccentricity
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The most frequently observed focal conic domdiRED’s) in lamellar phases are those based on confocal
paris of ellipse and hyperbola. Experimentally, the eccentricity of the ellipse takes a broad range of values 0
<e<1. We present an analytical expression for the curvature energy of a FCD that is valid in the entire range
0<e<1. Generally, the curvature energy of molated FCD reaches a minimum only &—1 (under the
constraint of a fixed major semiaxis of the elligsexceptions include situations with large saddle-splay elastic
constant and small domains where the applicability of the elastic theory is limited. In realistic cases, a value of
eccentricity smaller than 1 is stabilized by factors other than the curvature energy: by dislocations emerging
from the FCD’s withe+ 0, compression of layers and surface anchoring.

PACS numbg(s): 61.30.Eb, 61.30.Jf

I. INTRODUCTION layers within a FCD-I of a negative Gaussian curvature and
arbitrary eccentricity.

Lamellar phases such as a smedidiquid crystal with
one-dimensional positional order often organize in distorted
structures, with layers bent but still parallel to each other.
The layers adopt the shape of Dupin cyclides, i.e., surfaces The theoretical framework of the analysis has been devel-
whose lines of curvature are circles. The reason is that theped by Klenan[3]. In a FCD-I the layers fold around the
focal surfaces for Dupin cyclides degenerate into lines whicltonjugated ellipséE and one branchd of a hyperbola, in
reduces the singular energy. The defect lines are confocalich a way that they are everywhere perpendicular to the
pairs, usually an ellipse and hyperbola, around which thetraight lines joining any poiri¥1” on the ellipse to any point
layers fold. The focal pairs serve as a frame of a focal coniv” on the hyperbola, Fig. 1. Any poit on the lineM’'M”
domain (FCD) [1]. A particular case corresponding to an is the orthogonal intersection with this line of a uniquely
ellipse of zero eccentricityg=0, is a pair of a circle and a defined surfacé= layen X,,, perpendicular everywhere to
straight line. Experimentally, one observes all the possiblehe two-parameter family of lines1’M”. All the parallel
values of eccentricity in the ranges®e<1. There is no uni- surfacesX ), orthogonal toM’M” have the same centers of
versal explanation of this fact. The focal conics might alsocurvature, M’ and M”. The curvaturego’|=1/M'M or
form around a pair of paraboldg]; however, the parabolic |s”|=1/M"M become infinitely large wheM approaches
FCD’s arenotthe limiting casee=1 of an ellipse-hyperbola eitherM’ or M”. Correspondinglys,,’s are singular oM’

FCD and have different elastic features not considered in thiand M”. Since the physical part of each layer lies between
article. M’ andM”, the Gaussian curvature is negative o”<0.

Although the FCD’s have been the subject of intensive Dupin cyclides in a FCD-I show up features varying with
studies for many years since the pioneering work by Friedejhe position ofVl on the segmeritl’ M”: eitherS,,, ends on
in 1922[1], some basic features remain to be understoodihe ellipse on two point singularitigkayers 1, Fig. 1, or 3y
Most notably, there is no analytical expression for the curis free of singularities and looks similar to a deformed half-
vature energy of a FCD, except for the limiting case 0  torus(layer 2, or it ends on the hyperbola, with two conical
[3]. Lifting this restriction is important in a number of prob- indentationglayers 3.
lems, for example, in the description of tilt grain boundaries  The equations for the confocal ellipEeand hyperboldd,

[4], nuclei of the lamellar phase appearing from an isotropigocated in two perpendicular planes, are
phase[5], oily streaks(set of dislocations decorated by

FCD’s) [6], and generally in any problem of filling space

Il. STRUCTURE OF FCD-I

2 2
with curved lamellas. Both splay and saddle-splay energy z=0, x_+y_2:1 (E):
terms should be included in the consideration, since the a® b
smectic layers in FCD’s have a well-defined Gaussian cur- (1)
vature. FCD’s in known thermotropic lamellar media mani- X2 72
fest a negative Gaussian curvature; the corresponding do- y=0, W_F:1 (H);

main is called a FCD of the first species, or FCD-I. FCD’s of
the second specid&CD-II's) with a positive Gaussian cur-
vature reported recently for a lyotropic smectic phggeare  a andb are the major and the minor semiaxes of the ellipse,
rare. The energetics of FCD-II's is strongly influenced by therespectively. LetM’(x’, y’,0) be a point onE and
layers outside the domain that faver=0 [7]. This work  M"(x", 0,Zz") be a point onH, and let us parametrize the
presents an analytic expression for the curvature energy afonics in the usual walB]:
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ated with the mean and Gaussian curvatures of layers:
1 _
fZEK(O"-FO'")Z-l-Ka"o'"; (6)

K and K are called the splay and the saddle-splay elastic
constants. Note, however, that the splay term contains a
saddle-splay contribution-o'¢”. It is convenient to split
the integral into two parts:

sz fdxdr=W;+W,, (7
with

1
W,=— —szf o' o"dudvdr

2
(8)
__1K 1_e? f dudvdp
=K e)a (ecosu—p)(coshv—p)’
— ) o'2d"?dudvdr
W2=—(K+2K)b jw
dudvd
——A(l-€d)a P ©)

(coshv—e cosu)?’

FIG. 1. General geometrical aspect of a FCD-I. The straight lineand treat them apart. Here=K + 2K, p=r/a. The Jaco-
M'M" is the direction perpendicular to the layer at pditt M"  bian for the orthogonal coordinates, (v, r) is the quantity
andM” are points on the ellipse and the hyperbola, respectively. b2|o-’o-”|/(0’ _ 0”)2 in Eq. (5). BothK andK terms contrib-

ute to the “topology,” since they appear W,, which is an

o<su<2m, integral of the Gauss-Bonnet type; the notatide K+ 2K

" ,{x’=acosu,
expresses this combined contribution.

y'=bsinu,

- —o<yps<
Z’=bsinhy, wSVSs®”, 2 A. W, term

{x”= c coshw,
MH
s o s o ) The W, term is singular near the ellipse and hyperbola,
wherec®=a“—b®. The principal curvatures of layers write \yhere r—c cosu and r—acoshu. The phenomenological
1 1 elastic theory should not be applied in these regions, and one
o' = <0 o'= ~0: 3) has to restrict the _region of integration by a cut_off length,
ccosu—r acoshv—r called the core radius. Assume that the core radius does not

. . . . ) _depend on the laydi.e., does not depend an:
the choice of signs being arbitrary but consistent with

o' 0" <0; the quantityr characterizes the position of poist I eutoff=a COshv—r. near the hyperbola,
and obeys the inequality

r =ccosu+r. near the ellipse.
C cosu<r<a coshw. (4) cutoff ¢ P

The whole set of values for thecompleteFCD-I (shown in The assumption greatly oversimplifies the situation: for ex-
Fig. 1) is in the rangd —c, +[. The infinitesimal element ample, it does not take into account that the layers that in-

of surfacedS,(r) of the 3(r) cyclide is expressed through tersect the hyperbola far from the plane of the ellipse have
the principal curvatures d8] practically no singularity. Furthermore, near the defect cores,

the layers might suffer dilation, see R¢8] for a critical

2o’ o discussion.
dE(r)=(a,_—0,,)2dudv. (5) Integrating Eq.(8) over p splits W, into the singular
Wi _sing @nd nonsingulaV; _nonsingParts:
Ill. CURVATURE ENERGY al 27 du
. . . W_-=Kal—ezln—j df—,
The curvature energy of the FCD-I is defined as the inte- "9 ( ) (rc) "), coshv—ecosu

gral over the FCD-I's volume of the energy denditgssoci- (10
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27 In(coshy— e cosu)du = |n\/cosK v—e?

Wl—nonsing: Ka(l- eZ) fﬁ dv f

0 coshv—ecosu I(e)=8m o JoosRv—e&? dv
(17)
It i f le, by changi h iabl +4 fx dv | 2
t is easy to segfor example, changing the variable, T n
coshv—>1>//t) that . be. By ang ~=+/costf v—e®  coshv+ \cosH v—e?
T — 2
fﬁwd”fo coshy— e cosu =4mk(e?), (12 The first integrall ;(e) above is calculated by making the
following change of the variable:
where costf v—e? 1
—e2 '
o fl dt 1-e cos X
(0= 0 J(l—tz)(l—xtz) where 0<x<7/2 when O<u<o. Notice that this change of
variable is not valid fore=1. Then
is the complete elliptic integral of the first kind. Therefore, w2 2
the singular term reads |1(e):f dxw
0 Vi1—e?sirf x
a
W, _ging=47Ka(1—e?)K(e?)In—, (13 Ine In(1—-¢e?)] =
le =K(e?) -t +ZIC(1—e2). (17

wherer .. is typically of the order of the repeat distance of the

layers. A specific core energy, that cannot be calculated wit

Eqg. (6), should be addedW;_gng—Wi_gingt Weore: Where

W, ore grows with the length of the defect. We orifit .. In 1
I,(e)= f In

o reduce the second integrgl(e) in Eq. (16) to the table
orm, it suffices to change the variable as costi/t:

2t dt
1+J1-e%?] J1—-e%%J1-t?

some cases, this omission can be justified by the fact that the
parameterr, can be renormalized to absoMy,. into
Wl—sing- 2 T

The nonsingular paftL1) of W; is more difficult to evalu- =K(e?)In—— = K(1—-¢€?). (18)
ate. The problem is to find the integrals e 2

x 27 In(coshy— e cosu) Collecting the terms of the sut{e)=8l,(e) +4ml,(e),
|(e)=f dVJ du and one arrives at

o coshv—ecosu
W1 _nonsing= 47Ka(1—e?)K(e?)In(2y/1-€?). (19

_fwln(coshv—ecosu)d 14
Q(v)= o coshv—ecosu U (14 B. W, term
The W, term (9) is integrated by employing Eq12):
that are related: 5 )
W,=—4m7Aa(l—e")K(e%). (20
I(e)=2J Q(v)dw. W, is negative whem\ is positive, a fact which is always

insured ifk > — 2K. Note that for the free energy dens{®)

To evaluateQ(v), let us denoted=coshv—ecosu, and [0 be positive definite for the lamellar phag¢, must be
introduce a=exp(—+')<1, where cosh’'=coshiv/e. Then Wwithin the range —2K<K<0, which also means OA
A=\(1+a?—2acosu), \=el2a, and the integral takes a <2K (K is always positivg
canonical form

C. Total curvature energy

™ In\
Q=f 7 du The final expression for the total curvature eneidyy

o M(1+a"=2acosu) =W1_nonsingt Wi_sing+ Wo, Vvalid for an arbitrary eccentricity

fﬂ In(1+ a’—2a cosu) O=<e<1, adopts a very compact form:

u
M1+ a’—2acosu 2a\1—¢?
o M ) W=4ra(1l-e?)K(e?)| K Inr——A}: (21)
Cc

B min\ +27T|n(1—a2)
T NM1-a®)  N1-a®)

15
(19 notice thata\/1— e?=b, whereb is the minor semiaxis. For

e=0, Eq.(21) reproduces the known resy,6]
which can be checked by usiMpTHEMATICA 3.0; see also
Ref. [9]. Returning to the original variable in Q(v), one Wy=27a

: . (22
writes 1 (e) as

2a
K Inr——A

C
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W nonsing

10

(a)

w
150 e FIG. 3. FCD-I confined between two parallel plates in a flat cell.
1 The smectic layers are perpendicular to the bottom plate and tilted
125 2 at the top plate. The configuration of layers causes anchoring en-
100 ergy penalties for both poldout-of-the-plang and azimuthalin-
plane angles.
7 0 value off in Eq. (6), see Fig. &). Generally, for a reason-
50 1 ably large domaina/r > 10, the curvature energy becomes
25 5 minimum only ate— 1, Fig. 2b), a fact that has been already
foreseen on the basis of numerical calculatiBisHowever,
e it would be a mistake to conclude that a FCD-I tends to

0.2 04 0.6 08 1 . . o .
increase its eccentricity as much as possible on the ground of

Eq. (21). The reason is that in real samples the FCD’s are
FIG. 2. Energies of FCD-I's vs eccentriciyfor different val-  rarely isolated; their elastic energy is only a part of the total

ues of the elastic parametdrK (indicated by numbers above the energy that includes the energy of surface anchoring, dislo-

curves; dimensionless units witK =1 and a fixed major semiaxis cations, layers compressions, etc., as discussed below.

(b)

a=1. (a) Nonsingular term&Vonsing= Wi -nonsingt W2 Vs €. (b) To- First, note that the plots in Fig. 2 correspond to a fixed
tal energyW=W,_nonsingt Wi.singt W Vs € for FCD-I's of a large. major semiaxis,a=const. The volumes of FCD-I's with
(thick lines,a/r=1000 and a small siz¢thin lines,a/r .= 10). identical a’s but differente’s are obviously different; they
B .. scale as~a3(1—e?) =ab? Whena=const, an increase @f
\g;\tljrllaernt[e\r/rl:_ln 2~0.693, the energV, reduces to its sin- means a decrease of the minor semidxighus the curva-

ture energies of two FCD'’s with differelts should be com-
pared under additional geometrical constraints. These con-
straints in concrete experimental situations involve the finite
The expressiori21) is the curvature energy of a FCD-I size of the system and thus require to consider also the sur-
with an arbitrary eccentricity we have been looking for. Itsface anchoring energies that have been shown to be rather
validity is confirmed by numerical integration of the energy large in smectic phas¢40,11. The effect of confinement is
(21) allows one to trace the role of different parameters, forat the bottom plate of a flat sample, which can be provoked

example, to find how the curvature energy dependgmmd by a tangential anchoring at this _platshe molecules are
e when the major semiaxis of the ellipse is fixeds const, parallel and the layers are perpendicular to the plate, Fig. 3

Fig. 2 At the top plate, the layers are tilted. The tilt angle changes

from point to point, which necessarily results in an anchoring
The dependence of th-e curvaturg energkﬂé.and (2—2) energy penalty associated with the pol@ut-of-plane
on the saddle-splay elastic constant is obvious: the ldfger angles|11]. Furthermore, if the bounding plates are not iso-

the smaller is the energy; the reason is simply the negativgopicl FCD-I geometry provokes not only the polar but also
sign of the Gaussian curvature of Dupin cyclides in a FCD-I.an azimuthalin-plane anchoring energy penalty: in Fig. 3,

A further remark concerns the sum of the two nonsingulaine cyrved layers deviate from any of the possible straight
termsWi_nonsingt W in W at a=const. WhenA increases, |ines drawn in the plane of the cell. Both polar and azimuthal
the coordinate of the minimum of the sum shifts fr@n  4nchoring energies depend eand thus influence any mini-
—1 to e—0, Fig. 2. The tendency oWy nonsingt W2 10 mization problem for a confined geometry.

reach a minimum at small eccentricigy-0 is, of course, in The second reason that limitsrelates to the fact that
competition with the increase AWy gng at e—0. Thus the  |ayers inside the FCD-I's should match the layers outside the
minimum of curvature energy can be achieved somewhat  gomains. Because of their peculiar shape, FCD-I's cannot fill
different from 1 only when the domains are extremely small 5 hounded piece of space as isolated objects. They have to be
a/r.~10, and when the saddle-splay constant is close to itsmpedded in the surrounding matrix of smectic layers, that
upper limitK=0, set by the requirement of positive definite might be flat or curved. When the FCD-I of a small eccen-

IV. DISCUSSION
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tion carries an elastic energy proportional to the Burgers vec-
tor [13], ~\BKb, (per unit length; here B is the
compression modulus. Thus although the trerdl is fa-
vored by the curvature of layeissidethe FCD-I, an oppo-

- site trende— 0 is favored by the line tension VBKae of
D\ — dislocationsoutsidethe FCD-I. It is only when the eccentric-

’
%
va

Y g ity is zero that the dislocations do not appear; a toroidal

s FCD-I with e=0 can be smoothly embedded into the system
of flat and parallel smectic layers, Figlb4. A more detailed
analysis of matching between the layers inside and outside
the FCD-I's (that includes the case when the outside layers
are curvedis given in Ref[4]. Note also that the compres-
sion energy densitB?/2 results in additionaé-dependent
energy terms, important near the cores of confocal pairs, as
discussed by FournigB].

Overall, the problem of finding an equilibriumrequires
consideration of factors additional to the curvature energy,
such as dislocations, layers’ compressibility and surface an-
choring phenomena. One should bear this in mind when ana-
lyzing different results on FCD’s energies. For example, the

estimation 6] of the saddle-splay elastic const#from the
features of FCD-I's in oily streaks has been possible to carry
out only for B=0. As explained by Boltenhagest al. [6],

the model withB=0 leads to a large positiv& which is
thus only an indicator that the system under investigation
favors deformations with a negative Gaussian curvature
rather than with a positive Gaussian curvature. Lifting the
restrictionB=0 contributes to the decrease efand thus

decrease the estimatéd due to the dislocations and com-
pressibility effects discussed above; the exact analytical
analysis of the oily streaks f@d+0 has not yet been done.
Finally, note that in some instances, the eccentrieiig
not a parameter of energy minimization at all. An array of
e ! FCD-I's forming a grain boundarj4] is a good example of
eccentricity is the cause of the appearance of dislocafishswn 5 gjyation where the true minimizer is the size rather than
by thick _horlzi)ntal lines in@)] outside the FCD-I. In contrast, the the eccentricity: the eccentricity is fixed by the angleof
FCD-I with e=0 can be smoothly embedQed into a system .of ﬂatmisalignment of layers in two adjacent monodomains,
parallel layers; two such smoothly matching flat layers outside the I
FCD-1 are shown irb). e(w) =|sin(w/2)|. The result(21) allows one to calculate the
energy of such a grain boundary and to find the characteristic
size of the FCD's in if4].
tricity e>0 is embedded into a system of flat layers, the tilt
of smectic layersnsidethe FCD-I(with respect to the hori-
zontal plang requires a matching dislocation smitsidethe
FCD-I [12,6]. These dislocations run along the direction of  The work was supported by the NSF U.S.—France Coop-
the minor semiaxis of ellipse, Fig.(@. The total Burgers erative Scientific Program, Grant No. INT-9726802 and by
vectorb, of the dislocation set is directly related to the ec- NSF STC ALCOM under Grant No. DMR89-20147. All fig-
centricity and the size of ellipdé]: b,=2ae. Each disloca- ures in this article were generated usmgrHEMATICA 3.0.
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:
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N

FIG. 4. FCD-I of nonzerga) and zero eccentricitgh). Nonzero
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