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Curvature energy of a focal conic domain with arbitrary eccentricity
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The most frequently observed focal conic domains~FCD’s! in lamellar phases are those based on confocal
paris of ellipse and hyperbola. Experimentally, the eccentricity of the ellipse takes a broad range of values 0
<e,1. We present an analytical expression for the curvature energy of a FCD that is valid in the entire range
0<e,1. Generally, the curvature energy of anisolatedFCD reaches a minimum only ate→1 ~under the
constraint of a fixed major semiaxis of the ellipse!; exceptions include situations with large saddle-splay elastic
constant and small domains where the applicability of the elastic theory is limited. In realistic cases, a value of
eccentricity smaller than 1 is stabilized by factors other than the curvature energy: by dislocations emerging
from the FCD’s witheÞ0, compression of layers and surface anchoring.

PACS number~s!: 61.30.Eb, 61.30.Jf
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I. INTRODUCTION

Lamellar phases such as a smecticA liquid crystal with
one-dimensional positional order often organize in distor
structures, with layers bent but still parallel to each oth
The layers adopt the shape of Dupin cyclides, i.e., surfa
whose lines of curvature are circles. The reason is that
focal surfaces for Dupin cyclides degenerate into lines wh
reduces the singular energy. The defect lines are conf
pairs, usually an ellipse and hyperbola, around which
layers fold. The focal pairs serve as a frame of a focal co
domain ~FCD! @1#. A particular case corresponding to a
ellipse of zero eccentricity,e50, is a pair of a circle and a
straight line. Experimentally, one observes all the poss
values of eccentricity in the range 0<e,1. There is no uni-
versal explanation of this fact. The focal conics might a
form around a pair of parabolas@2#; however, the parabolic
FCD’s arenot the limiting casee51 of an ellipse-hyperbola
FCD and have different elastic features not considered in
article.

Although the FCD’s have been the subject of intens
studies for many years since the pioneering work by Frie
in 1922 @1#, some basic features remain to be understo
Most notably, there is no analytical expression for the c
vature energy of a FCD, except for the limiting casee→0
@3#. Lifting this restriction is important in a number of prob
lems, for example, in the description of tilt grain boundar
@4#, nuclei of the lamellar phase appearing from an isotro
phase @5#, oily streaks ~set of dislocations decorated b
FCD’s! @6#, and generally in any problem of filling spac
with curved lamellas. Both splay and saddle-splay ene
terms should be included in the consideration, since
smectic layers in FCD’s have a well-defined Gaussian c
vature. FCD’s in known thermotropic lamellar media ma
fest a negative Gaussian curvature; the corresponding
main is called a FCD of the first species, or FCD-I. FCD’s
the second species~FCD-II’s! with a positive Gaussian cur
vature reported recently for a lyotropic smectic phase@7# are
rare. The energetics of FCD-II’s is strongly influenced by t
layers outside the domain that favore50 @7#. This work
presents an analytic expression for the curvature energ
PRE 611063-651X/2000/61~2!/1574~5!/$15.00
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layers within a FCD-I of a negative Gaussian curvature a
arbitrary eccentricity.

II. STRUCTURE OF FCD-I

The theoretical framework of the analysis has been de
oped by Kléman @3#. In a FCD-I the layers fold around th
conjugated ellipseE and one branchH of a hyperbola, in
such a way that they are everywhere perpendicular to
straight lines joining any pointM 8 on the ellipse to any poin
M 9 on the hyperbola, Fig. 1. Any pointM on the lineM 8M 9
is the orthogonal intersection with this line of a unique
defined surface~5 layer! SM , perpendicular everywhere t
the two-parameter family of linesM 8M 9. All the parallel
surfacesSM orthogonal toM 8M 9 have the same centers o
curvature,M 8 and M 9. The curvaturesus8u51/M 8M or
us9u51/M 9M become infinitely large whenM approaches
eitherM 8 or M 9. Correspondingly,SM ’s are singular onM 8
and M 9. Since the physical part of each layer lies betwe
M 8 andM 9, the Gaussian curvature is negative,s8s9,0.

Dupin cyclides in a FCD-I show up features varying wi
the position ofM on the segmentM 8M 9: eitherSM ends on
the ellipse on two point singularities~layers 1, Fig. 1!, or SM
is free of singularities and looks similar to a deformed ha
torus~layer 2!, or it ends on the hyperbola, with two conic
indentations~layers 3!.

The equations for the confocal ellipseE and hyperbolaH,
located in two perpendicular planes, are

z50,
x2

a2 1
y2

b2 51 ~E!;

~1!

y50,
x2

a22b22
z2

b2 51 ~H !;

a andb are the major and the minor semiaxes of the ellip
respectively. Let M 8(x8, y8, 0) be a point on E and
M 9(x9, 0, z9) be a point onH, and let us parametrize th
conics in the usual way@3#:
1574 ©2000 The American Physical Society



ith

t
h

te

stic
s a

la,
l
one
th,

not

x-
in-

ave
es,

lin

y.
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M 8H x85a cosu,
y85b sinu, 0<u,2p,

M 9H x95c coshn,
z95b sinhn, 2`<n<`, ~2!

wherec25a22b2. The principal curvatures of layers write

s85
1

c cosu2r
,0; s95

1

a coshn2r
.0; ~3!

the choice of signs being arbitrary but consistent w
s8s9,0; the quantityr characterizes the position of pointM
and obeys the inequality

c cosu,r ,a coshn. ~4!

The whole set ofr values for thecompleteFCD-I ~shown in
Fig. 1! is in the range@2c,1`@ . The infinitesimal elemen
of surfacedS(r ) of the S(r ) cyclide is expressed throug
the principal curvatures as@3#

dS~r !5
b2us8s9u

~s82s9!2 dudn. ~5!

III. CURVATURE ENERGY

The curvature energy of the FCD-I is defined as the in
gral over the FCD-I’s volume of the energy densityf associ-

FIG. 1. General geometrical aspect of a FCD-I. The straight
M 8M 9 is the direction perpendicular to the layer at pointM; M 8
andM 9 are points on the ellipse and the hyperbola, respectivel
-

ated with the mean and Gaussian curvatures of layers:

f 5
1

2
K~s81s9!21K̄s8s9; ~6!

K and K̄ are called the splay and the saddle-splay ela
constants. Note, however, that the splay term contain
saddle-splay contribution;s8s9. It is convenient to split
the integral into two parts:

W5E f dSdr5W11W2 , ~7!

with

W152
1

2
Kb2E s8s9dudndr

52
1

2
K~12e2!aE dudndr

~e cosu2r!~coshn2r!
,

~8!

W252~K̄12K !b2E s82s92dudndr

~s82s9!2

52L~12e2!aE dudndr

~coshn2e cosu!2 , ~9!

and treat them apart. HereL5K̄12K, r5r /a. The Jaco-
bian for the orthogonal coordinates (u, v, r ) is the quantity
b2us8s9u/(s82s9)2 in Eq. ~5!. BothK andK̄ terms contrib-
ute to the ‘‘topology,’’ since they appear inW2 , which is an
integral of the Gauss-Bonnet type; the notationL5K̄12K
expresses this combined contribution.

A. W1 term

The W1 term is singular near the ellipse and hyperbo
where r→c cosu and r→a coshu. The phenomenologica
elastic theory should not be applied in these regions, and
has to restrict the region of integration by a cutoff leng
called the core radius. Assume that the core radius does
depend on the layer~i.e., does not depend onr!:

r cutoff5a coshn2r c near the hyperbola,

r cutoff5c cosu1r c near the ellipse.

The assumption greatly oversimplifies the situation: for e
ample, it does not take into account that the layers that
tersect the hyperbola far from the plane of the ellipse h
practically no singularity. Furthermore, near the defect cor
the layers might suffer dilation, see Ref.@8# for a critical
discussion.

Integrating Eq.~8! over r splits W1 into the singular
W1-sing and nonsingularW1-nonsingparts:

W1-sing5Ka~12e2!lnS a

r c
D E

2`

`

dnE
0

2p du

coshn2e cosu
,

~10!
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W1-nonsing5Ka~12e2!E
2`

`

dnE
0

2p ln~coshn2e cosu!du

coshn2e cosu
.

~11!

It is easy to see~for example, by changing the variabl
coshn→1/t! that

E
2`

`

dnE
0

2p du

coshn2e cosu
54pK~e2!, ~12!

where

K~x!5E
0

1 dt

A~12t2!~12xt2!

is the complete elliptic integral of the first kind. Therefor
the singular term reads

W1-sing54pKa~12e2!K~e2!ln
a

r c
, ~13!

wherer c is typically of the order of the repeat distance of t
layers. A specific core energy, that cannot be calculated w
Eq. ~6!, should be added:W1-sing→W1-sing1Wcore, where
Wcore grows with the length of the defect. We omitWcore. In
some cases, this omission can be justified by the fact tha
parameterr c can be renormalized to absorbWcore into
W1-sing.

The nonsingular part~11! of W1 is more difficult to evalu-
ate. The problem is to find the integrals

I ~e!5E
2`

`

dnE
0

2p ln~coshn2e cosu!

coshn2e cosu
du and

Q~n!5E
0

p ln~coshn2e cosu!

coshn2e cosu
du, ~14!

that are related:

I ~e!52E
2`

`

Q~n!dn.

To evaluateQ(n), let us denoteA5coshn2ecosu, and
introduce a5exp(2n8),1, where coshn85coshn/e. Then
A5l(11a222a cosu), l5e/2a, and the integral takes
canonical form

Q5E
0

p ln l

l~11a222a cosu!
du

1E
0

p ln~11a222a cosu!

l~11a222a cosu!
du

5
p ln l

l~12a2!
1

2p ln~12a2!

l~12a2!
, ~15!

which can be checked by usingMATHEMATICA 3.0; see also
Ref. @9#. Returning to the original variablen in Q(n), one
writes I (e) as
th

he

I ~e!58pE
2`

` lnAcosh2 n2e2

Acosh2 n2e2
dn

14pE
2`

` dn

Acosh2 n2e2
ln

2

coshn1Acosh2 n2e2

58pI 1~e!14pI 2~e!. ~16!

The first integralI 1(e) above is calculated by making th
following change of the variable:

cosh2 n2e2

12e2 5
1

cos2 x
,

where 0,x,p/2 when 0,u,`. Notice that this change o
variable is not valid fore51. Then

I 1~e!5E
0

p/2

dx
ln~A12e2/cosx!

A12e2 sin2 x

5K~e2!F ln e

2
1

ln~12e2!

4 G1
p

4
K~12e2!. ~17!

To reduce the second integralI 2(e) in Eq. ~16! to the table
form, it suffices to change the variable as coshn51/t:

I 2~e!5E
0

1

lnS 2t

11A12e2t2D dt

A12e2t2A12t2

5K~e2!ln
2

e
2

p

2
K~12e2!. ~18!

Collecting the terms of the sumI (e)58pI 1(e)14pI 2(e),
one arrives at

W1-nonsing54pKa~12e2!K~e2!ln~2A12e2!. ~19!

B. W2 term

The W2 term ~9! is integrated by employing Eq.~12!:

W2524pLa~12e2!K~e2!. ~20!

W2 is negative whenL is positive, a fact which is always
insured ifK̄.22K. Note that for the free energy density~6!

to be positive definite for the lamellar phase,K̄ must be
within the range22K,K̄<0, which also means 0,L
<2K ~K is always positive!.

C. Total curvature energy

The final expression for the total curvature energyW
5W1-nonsing1W1-sing1W2 , valid for an arbitrary eccentricity
0<e,1, adopts a very compact form:

W54pa~12e2!K~e2!FK ln
2aA12e2

r c
2LG ; ~21!

notice thataA12e25b, whereb is the minor semiaxis. For
e50, Eq. ~21! reproduces the known result@3,6#

W052p2aFK ln
2a

r c
2LG . ~22!
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When L/K5 ln 2'0.693, the energyW0 reduces to its sin-
gular term.

IV. DISCUSSION

The expression~21! is the curvature energy of a FCD
with an arbitrary eccentricity we have been looking for.
validity is confirmed by numerical integration of the ener
density ~6! over the FCD-I’s volume. The analytical form
~21! allows one to trace the role of different parameters,
example, to find how the curvature energy depends onK̄ and
e when the major semiaxis of the ellipse is fixed,a5const,
Fig. 2.

The dependence of the curvature energies~21! and ~22!

on the saddle-splay elastic constant is obvious: the largeK̄,
the smaller is the energy; the reason is simply the nega
sign of the Gaussian curvature of Dupin cyclides in a FCD
A further remark concerns the sum of the two nonsingu
termsW1-nonsing1W2 in W at a5const. WhenL increases,
the coordinate of the minimum of the sum shifts frome
→1 to e→0, Fig. 2. The tendency ofW1-nonsing1W2 to
reach a minimum at small eccentricitye→0 is, of course, in
competition with the increase ofW1-sing at e→0. Thus the
minimum of curvature energy can be achieved ate somewhat
different from 1 only when the domains are extremely sm
a/r c;10, and when the saddle-splay constant is close to
upper limit K̄50, set by the requirement of positive defini

FIG. 2. Energies of FCD-I’s vs eccentricitye for different val-
ues of the elastic parameterL/K ~indicated by numbers above th
curves!; dimensionless units withK51 and a fixed major semiaxi
a51. ~a! Nonsingular termsWnonsing5W1-nonsing1W2 vs e. ~b! To-
tal energyW5W1-nonsing1W1-sing1W2 vs e for FCD-I’s of a large
~thick lines,a/r c51000! and a small size~thin lines,a/r c510!.
r

e
I.
r

l,
ts

value of f in Eq. ~6!, see Fig. 2~b!. Generally, for a reason
ably large domain,a/r c.10, the curvature energy become
minimum only ate→1, Fig. 2~b!, a fact that has been alread
foreseen on the basis of numerical calculations@3#. However,
it would be a mistake to conclude that a FCD-I tends
increase its eccentricity as much as possible on the groun
Eq. ~21!. The reason is that in real samples the FCD’s
rarely isolated; their elastic energy is only a part of the to
energy that includes the energy of surface anchoring, di
cations, layers compressions, etc., as discussed below.

First, note that the plots in Fig. 2 correspond to a fix
major semiaxis,a5const. The volumes of FCD-I’s with
identical a’s but different e’s are obviously different; they
scale as;a3(12e2)5ab2. Whena5const, an increase ofe
means a decrease of the minor semiaxisb. Thus the curva-
ture energies of two FCD’s with differente’s should be com-
pared under additional geometrical constraints. These c
straints in concrete experimental situations involve the fin
size of the system and thus require to consider also the
face anchoring energies that have been shown to be ra
large in smectic phases@10,11#. The effect of confinement is
illustrated in Fig. 3. The elliptical base of a FCD-I is locate
at the bottom plate of a flat sample, which can be provok
by a tangential anchoring at this plate~the molecules are
parallel and the layers are perpendicular to the plate, Fig!.
At the top plate, the layers are tilted. The tilt angle chang
from point to point, which necessarily results in an anchor
energy penalty associated with the polar~out-of-plane!
angles@11#. Furthermore, if the bounding plates are not is
tropic, FCD-I geometry provokes not only the polar but al
an azimuthal~in-plane! anchoring energy penalty: in Fig. 3
the curved layers deviate from any of the possible strai
lines drawn in the plane of the cell. Both polar and azimut
anchoring energies depend one and thus influence any mini
mization problem for a confined geometry.

The second reason that limitse relates to the fact tha
layers inside the FCD-I’s should match the layers outside
domains. Because of their peculiar shape, FCD-I’s canno
a bounded piece of space as isolated objects. They have
embedded in the surrounding matrix of smectic layers, t
might be flat or curved. When the FCD-I of a small ecce

FIG. 3. FCD-I confined between two parallel plates in a flat ce
The smectic layers are perpendicular to the bottom plate and t
at the top plate. The configuration of layers causes anchoring
ergy penalties for both polar~out-of-the-plane! and azimuthal~in-
plane! angles.
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tricity e.0 is embedded into a system of flat layers, the
of smectic layersinside the FCD-I~with respect to the hori-
zontal plane! requires a matching dislocation setoutsidethe
FCD-I @12,6#. These dislocations run along the direction
the minor semiaxis of ellipse, Fig. 4~a!. The total Burgers
vectorb« of the dislocation set is directly related to the e
centricity and the size of ellipse@6#: b«52ae. Each disloca-

FIG. 4. FCD-I of nonzero~a! and zero eccentricity~b!. Nonzero
eccentricity is the cause of the appearance of dislocations@shown
by thick horizontal lines in~a!# outside the FCD-I. In contrast, th
FCD-I with e50 can be smoothly embedded into a system of
parallel layers; two such smoothly matching flat layers outside
FCD-I are shown in~b!.
, J
t

f

tion carries an elastic energy proportional to the Burgers v
tor @13#, ;ABKb« ~per unit length!; here B is the
compression modulus. Thus although the trende→1 is fa-
vored by the curvature of layersinside the FCD-I, an oppo-
site trende→0 is favored by the line tension;ABKae of
dislocationsoutsidethe FCD-I. It is only when the eccentric
ity is zero that the dislocations do not appear; a toroi
FCD-I with e50 can be smoothly embedded into the syst
of flat and parallel smectic layers, Fig. 4~b!. A more detailed
analysis of matching between the layers inside and out
the FCD-I’s ~that includes the case when the outside lay
are curved! is given in Ref.@4#. Note also that the compres
sion energy densityB«2/2 results in additionale-dependent
energy terms, important near the cores of confocal pairs
discussed by Fournier@8#.

Overall, the problem of finding an equilibriume requires
consideration of factors additional to the curvature ener
such as dislocations, layers’ compressibility and surface
choring phenomena. One should bear this in mind when a
lyzing different results on FCD’s energies. For example,
estimation@6# of the saddle-splay elastic constantK̄ from the
features of FCD-I’s in oily streaks has been possible to ca
out only for B50. As explained by Boltenhagenet al. @6#,
the model withB50 leads to a large positiveK̄ which is
thus only an indicator that the system under investigat
favors deformations with a negative Gaussian curvat
rather than with a positive Gaussian curvature. Lifting t
restriction B50 contributes to the decrease ofe and thus
decrease the estimatedK̄ due to the dislocations and com
pressibility effects discussed above; the exact analyt
analysis of the oily streaks forBÞ0 has not yet been done

Finally, note that in some instances, the eccentricitye is
not a parameter of energy minimization at all. An array
FCD-I’s forming a grain boundary@4# is a good example of
a situation where the true minimizer is the size rather th
the eccentricity: the eccentricity is fixed by the anglev of
misalignment of layers in two adjacent monodomain
e(v)5usin(v/2)u. The result~21! allows one to calculate the
energy of such a grain boundary and to find the character
size of the FCD’s in it@4#.
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